Exercise 3

(a) The following points are given in cylindrical coordinates; express each in rectangular coordinates and spherical coordinates: $\left(1,45^{\circ}, 1\right),(2, \pi / 2,-4),\left(0,45^{\circ}, 10\right),(3, \pi / 6,4),(1$, $\pi / 6,0)$, and $(2,3 \pi / 4,-2)$. (Only the first point is solved in the Study Guide.)
(b) Change each of the following points from rectangular coordinates to spherical coordinates and to cylindrical coordinates: $(2,1,-2),(0,3,4),(\sqrt{2}, 1,1),(-2 \sqrt{3},-2,3)$. (Only the first point is solved in the Study Guide.)

Solution

Part (a)

Cartesian coordinates (x, y, z) and spherical coordinates (ρ, θ, ϕ), with ϕ being the polar angle, can be written in terms of cylindrical coordinates (r, θ, z) as

$$
\begin{aligned}
& x=r \cos \theta \quad \rho^{2}=r^{2}+z^{2} \\
& y=r \sin \theta \quad \theta=\theta \\
& z=z \quad \rho \cos \phi=z . \\
& \left(r=1, \theta=45^{\circ}, z=1\right) \\
& \left.\begin{array}{l}
x=1 \cos 45^{\circ} \\
y=1 \sin 45^{\circ} \\
z=1
\end{array}\right\} \quad \rightarrow \quad\left(x=\frac{\sqrt{2}}{2}, y=\frac{\sqrt{2}}{2}, z=1\right) \\
& \left.\begin{array}{l}
\rho=\sqrt{1^{2}+1^{2}} \\
\theta=45^{\circ} \\
\phi=\cos ^{-1}\left(\frac{1}{\sqrt{1^{2}+1^{2}}}\right)
\end{array}\right\} \rightarrow \quad\left(\rho=\sqrt{2}, \theta=45^{\circ}, \phi=45^{\circ}\right) \\
& (r=2, \theta=\pi / 2, z=-4) \\
& \left.\begin{array}{l}
x=2 \cos \frac{\pi}{2} \\
y=2 \sin \frac{\pi}{2} \\
z=-4
\end{array}\right\} \quad \rightarrow \quad(x=0, y=2, z=-4) \\
& \left.\begin{array}{l}
\rho=\sqrt{2^{2}+(-4)^{2}} \\
\theta=\frac{\pi}{2} \\
\phi=\cos ^{-1}\left(\frac{-4}{\sqrt{2^{2}+(-4)^{2}}}\right)
\end{array}\right\} \rightarrow \quad\left(\rho=\sqrt{20}, \theta=\frac{\pi}{2}, \phi \approx 153^{\circ}\right)
\end{aligned}
$$

$$
\left(r=0, \theta=45^{\circ}, z=10\right)
$$

$$
\left.\begin{array}{l}
x=0 \cos 45^{\circ} \\
y=0 \sin 45^{\circ} \\
z=10
\end{array}\right\} \quad \rightarrow \quad(x=0, y=0, z=10)
$$

$$
\left.\begin{array}{l}
\rho=\sqrt{0^{2}+10^{2}} \\
\theta=45^{\circ} \\
\phi=\cos ^{-1}\left(\frac{10}{\sqrt{0^{2}+10^{2}}}\right)
\end{array}\right\} \rightarrow \quad\left(\rho=10, \theta=45^{\circ}, \phi=0\right)
$$

$$
(r=3, \theta=\pi / 6, z=4)
$$

$$
\left.\begin{array}{l}
x=3 \cos \frac{\pi}{6} \\
y=3 \sin \frac{\pi}{6} \\
z=4
\end{array}\right\} \quad \rightarrow \quad\left(x=\frac{3 \sqrt{3}}{2}, y=\frac{3}{2}, z=4\right)
$$

$$
\left.\begin{array}{l}
\rho=\sqrt{3^{2}+4^{2}} \\
\theta=\frac{\pi}{6} \\
\phi=\cos ^{-1}\left(\frac{4}{\sqrt{3^{2}+4^{2}}}\right)
\end{array}\right\} \quad \rightarrow \quad\left(\rho=5, \theta=\frac{\pi}{6}, \phi \approx 36.9^{\circ}\right)
$$

$$
(r=1, \theta=\pi / 6, z=0)
$$

$$
\left.\begin{array}{l}
x=1 \cos \frac{\pi}{6} \\
y=1 \sin \frac{\pi}{6} \\
z=0
\end{array}\right\} \quad \rightarrow \quad\left(x=\frac{\sqrt{3}}{2}, y=\frac{1}{2}, z=0\right)
$$

$$
\left.\begin{array}{l}
\rho=\sqrt{1^{2}+0^{2}} \\
\theta=\frac{\pi}{6} \\
\phi=\cos ^{-1}\left(\frac{0}{\sqrt{1^{2}+0^{2}}}\right)
\end{array}\right\} \quad \rightarrow \quad\left(\rho=1, \theta=\frac{\pi}{6}, \phi=\frac{\pi}{2}\right)
$$

$$
\left.\begin{array}{l}
\quad(r=2, \theta=3 \pi / 4, z=-2) \\
\left.\begin{array}{l}
x=2 \cos \frac{3 \pi}{4} \\
y=2 \sin \frac{3 \pi}{4} \\
z=-2
\end{array}\right\} \quad \rightarrow \quad(x=-\sqrt{2}, y=\sqrt{2}, z=-2) \\
\rho=\sqrt{2^{2}+(-2)^{2}} \\
\theta=\frac{3 \pi}{4} \\
\phi=\cos ^{-1}\left(\frac{-2}{\sqrt{2^{2}+(-2)^{2}}}\right)
\end{array}\right\} \quad \rightarrow \quad\left(\rho=\sqrt{8}, \theta=\frac{3 \pi}{4}, \phi=\frac{3 \pi}{4}\right)
$$

Part (b)

Cylindrical coordinates (r, θ, z) and spherical coordinates (ρ, θ, ϕ), with ϕ being the polar angle, can be written in terms of Cartesian coordinates (x, y, z) as

$$
\begin{array}{rr}
r^{2}=x^{2}+y^{2} & \rho^{2}=x^{2}+y^{2}+z^{2} \\
\tan \theta=\frac{y}{x} & \tan \theta=\frac{y}{x} \\
z=z & \rho \cos \phi=z .
\end{array}
$$

$$
(x=2, y=1, z=-2)
$$

$$
\left.\begin{array}{l}
r=\sqrt{2^{2}+1^{2}} \\
\left.\theta=\tan ^{-1}\left(\frac{1}{2}\right)\right\} \quad \rightarrow \quad\left(r=\sqrt{5}, \theta \approx 26.6^{\circ}, z=-2\right) \\
z=-2 \\
\rho=\sqrt{2^{2}+1^{2}+(-2)^{2}} \\
\theta=\tan ^{-1}\left(\frac{1}{2}\right) \\
\phi=\cos ^{-1}\left(\frac{-2}{\sqrt{2^{2}+1^{2}+(-2)^{2}}}\right)
\end{array}\right\} \quad \rightarrow \quad\left(\rho=3, \theta \approx 26.6^{\circ}, \phi \approx 132^{\circ}\right)
$$

$$
\begin{aligned}
& (x=0, y=3, z=4) \\
& \left.\begin{array}{rl}
r & =\sqrt{0^{2}+3^{2}} \\
\theta & =\tan ^{-1}\left(\frac{3}{0}\right) \\
z & =4
\end{array}\right\} \quad \rightarrow \quad\left(r=3, \theta=\frac{\pi}{2}, z=4\right) \\
& \left.\begin{array}{l}
\rho=\sqrt{0^{2}+3^{2}+4^{2}} \\
\theta=\tan ^{-1}\left(\frac{3}{0}\right) \\
\phi=\cos ^{-1}\left(\frac{4}{\sqrt{0^{2}+3^{2}+4^{2}}}\right)
\end{array}\right\} \rightarrow \quad\left(\rho=5, \theta=\frac{\pi}{2}, \phi \approx 36.9^{\circ}\right) \\
& (x=\sqrt{2}, y=1, z=1) \\
& r=\sqrt{(\sqrt{2})^{2}+1^{2}} \\
& \begin{array}{l}
\left.\begin{array}{l}
\theta=\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right) \\
z=1
\end{array}\right\} \quad \rightarrow \quad\left(r=\sqrt{3}, \theta \approx 35.3^{\circ}, z=1\right),
\end{array} \\
& \left.\begin{array}{l}
\rho=\sqrt{(\sqrt{2})^{2}+1^{2}+1^{2}} \\
\theta=\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right) \\
\phi=\cos ^{-1}\left(\frac{1}{\sqrt{(\sqrt{2})^{2}+1^{2}+1^{2}}}\right)
\end{array}\right\} \rightarrow \quad\left(\rho=2, \theta \approx 35.3^{\circ}, \phi=\frac{\pi}{3}\right) \\
& (x=-2 \sqrt{3}, y=-2, z=3) \\
& \left.\begin{array}{rl}
r & =\sqrt{(-2 \sqrt{3})^{2}+(-2)^{2}} \\
\theta & =\pi+\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right) \\
z & =3
\end{array}\right\} \quad \rightarrow \quad\left(r=4, \theta=\frac{7 \pi}{6}, z=3\right) \\
& \left.\begin{array}{l}
\rho=\sqrt{(-2 \sqrt{3})^{2}+(-2)^{2}+3^{2}} \\
\theta=\pi+\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right) \\
3
\end{array}\right\} \rightarrow \quad\left(\rho=5, \theta=\frac{7 \pi}{6}, \phi \approx 53.1^{\circ}\right) \\
& \left.\phi=\cos ^{-1}\left(\frac{3}{\sqrt{(-2 \sqrt{3})^{2}+(-2)^{2}+3^{2}}}\right)\right)
\end{aligned}
$$

